Cellular Energy Complex (NAD+ Pathway)

Ingredients: Nicotinamide Riboside, Methylated B Vitamins, Pterostilbene

McReynolds, M. R., Chellappa, K., & Baur, J. A. (2020). Age-related NAD⁺ decline. Experimental Gerontology, 134, Article 110888. LINK

Strømland, Ø. (2021). The balance between NAD⁺ biosynthesis and consumption in ageing: Implications for health and disease. Mechanisms of Ageing and Development, 203, Article 111651. LINK

Abdellatif, M., Feridooni, T. A., & Lavie, C. J. (2021). NAD⁺ metabolism in cardiac health, aging, and disease. Circulation, 144(22), 1795–1817. LINK

Airhart SE, Shireman LM, Risler LJ, Anderson GD, Nagana Gowda GA, Raftery D, et al. An open-label, non randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD⁺ levels in healthy volunteers. PLoS ONE. 2017;12(12):e0186459. LINK

Dellinger RW, Santos SR, Morris M, Evans M, Alminana D, Guarente L, Marcotulli E. Repeat dose NRPT (nicotinamide riboside and pterostilbene) increases NAD⁺ levels in humans safely and sustainably: a randomized, double blind, placebo-controlled study. NPJ Aging and Mechanisms of Disease. 2017;3:17. LINK

Lyon, P., Strippoli, V., Fang, B., & Cimmino, L. (2020). B Vitamins and One Carbon Metabolism: Implications in Human Health and Disease. Nutrients, 12(9), 2867. LINK

Tardy, A. L., Pouteau, E., Marquez, D., Yilmaz, C., & Scholey, A. (2020). Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients, 12(1), 228. LINK

Cellular Protection Complex (Antioxidants)

Ingredients: Pterostilbene, Grape Seed Extract (OPCs)

Riche, D. M., McEwen, C. L., Riche, K. D., Sherman, J. J., Wofford, M. R., Deschamp, D., & Griswold, M. E. (2014). Analysis of safety from a human clinical trial with pterostilbene. Journal of Clinical Lipidology, 8(2), 192–198. LINK

Sato, M., Bagchi, D., Tosaki, A., & Das, D. K.(2001). Grape seed proanthocyanidin reduces cardiomyocyte apoptosis by inhibiting ischemia/reperfusion-induced activation of JNK-1 and C-JUN. Free Radical Biology & Medicine, 31(6), 729–737. LINK

Cellular Renewal Complex (Senolytics)

Ingredients: Fisetin, Quercetin

Hickson, L. J., Langhi Prata, L. G. P., Bobart, S. A., Evans, T. K., Giorgadze, N., Hashmi, S. K., et al. (2019). Senolytics decrease senescent cells in humans: preliminary report from a clinical trial. EBioMedicine, 47, 446–456. LINK

Justice, J. N., Nambiar, A. M., Tchkonia, T., LeBrasseur, N. K., Pascual, R., Hashmi, S. K., et al. (2019). Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label pilot study. EBioMedicine, 40, 554–563. LINK

Boots, A. W., Haenen, G. R. M. M., & Bast, A. (2008).Health effects of quercetin: from antioxidant to nutraceutical. European Journal of Pharmacology, 585(2–3), 325–337. LINK

Metabolic Efficiency Complex

Ingredients: Curcumin (with Piperine), B-Vitamin Complex

Reference 1

Panahi, Y., Khalili, N., Sahebi, E., Namazi, S., Reiner, Ž., Majeed, M., & Sahebkar, A. (2017). Curcumin lowers serum lipids and improves metabolic parameters in patients with metabolic syndrome. Phytotherapy Research, 31(12), 1855–1863. LINK

Reference 2

Di Pierro, F., Rapacioli, G., Di Maio, E. A., Appendino, G., Franceschi, F., & Togni, S. (2015). Comparative evaluation of bioavailability of curcumin formulations in healthy volunteers. Journal of Clinical Pharmacology, 55(11), 1249–1255. LINK

Reference 3

de Jager, C. A., Oulhaj, A., Jacoby, R., Refsum, H., & Smith, A. D. (2012). Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment. International Journal of Geriatric Psychiatry, 27(6), 592–600. LINK

Reference 4

Kennedy, D. O. (2016).B vitamins and the brain: mechanisms, dose and efficacy. Pharmacology Biochemistry and Behavior, 164, 84–98. LINK

Inflammation Balance Complex

Ingredients: Curcumin, Grape Seed Extract

Sahebkar, A., Serban, M. C., Ursoniu, S., Banach, M. (2015). Effect of curcuminoids on oxidative stress: a systematic review and meta-analysis of randomized controlled trials. Journal of Functional Foods, 18, 898–909. LINK

Panahi, Y., Hosseini, M. S., Khalili, N., Naimi, E., Simental-Mendía, L. E., Majeed, M., & Sahebkar, A. (2016). Effects of curcumin on inflammatory biomarkers in metabolic syndrome. Annals of Nutrition & Metabolism, 69(1), 27–36. LINK

Shi, J., Yu, J., Pohorly, J. E., & Kakuda, Y. (2003). Polyphenolics in grape seeds—biochemistry and functionality. Journal of Medicinal Food, 6(4), 291–299. LINK

Kenny, T. P., & Keen, C. L. (2004). Proanthocyanidins and cardiovascular disease: emerging mechanisms. Journal of Nutritional Biochemistry, 15(10), 567–574. LINK

DNA Stability & Methylation Complex

Ingredients: Methylated B Vitamins, Vitamin D3, Vitamin K2

Friso, S., Choi, S. W., Girelli, D., Mason, J. B., Dolnikowski, G. G., Bagley, P. J., et al. (2002). A common mutation in the MTHFR gene affects genomic DNA methylation. Proceedings of the National Academy of Sciences, 99(8), 5606–5611. LINK

McKay, J. A., & Mathers, J. C. (2011).
Dietary folate, DNA methylation and human disease. British Journal of Nutrition, 105(7), 1003–1010. LINK

Pilz, S., Zittermann, A., Trummer, C., Theiler-Schwetz, V., Lerchbaum, E., Keppel, M. H., et al. (2019). Vitamin D testing and treatment: a narrative review. Endocrine Connections, 8(2), R27–R43. LINK

Beulens, J. W., Booth, S. L., van den Heuvel, E. G., Stoecklin, E., Baka, A., & Vermeer, C. (2013). The effect of menaquinone-7 supplementation on circulating dephosphorylated-uncarboxylated matrix Gla-protein (dp-ucMGP) and osteocalcin: results from a double-blind, randomized, placebo-controlled trial. Thrombosis and Haemostasis, 110(6), 1155–1165. LINK

General Cellular Health and Longevity

Cellular health underpins resilience - the ability of cells, tissues, and organ systems to adapt to physical, metabolic, and psychological stress. Mitochondrial energy production, redox balance, DNA repair, and inflammatory control collectively determine nervous system stability, stress tolerance, and long-term health.

1. Cellular Energy & Adaptive Resilience

Martínez-Reyes, I., & Chandel, N. S. (2020). Cellular metabolism as a driver of resilience and adaptation.
Cell Metabolism, 32(5), 712–728. LINK

Demonstrates that mitochondrial energy production, redox balance, and metabolic flexibility are foundational to cellular resilience, stress tolerance, and systemic adaptation.

2. NAD⁺, Cellular Stress Resistance & Neuroprotection

Verdin, E. (2015). NAD⁺ in aging, metabolism, and neurodegeneration.
Science, 350(6265), 1208–1213. LINK

Defines NAD⁺ as a central regulator of cellular stress resistance, DNA repair, mitochondrial health, and nervous system integrity.

3. Mitochondria, Energy Failure & Nervous System Function

Picard, M., & McEwen, B. S. (2018). Psychological stress and mitochondria: a conceptual framework. Psychosomatic Medicine, 80(2), 126–140. LINK

Links mitochondrial health directly to stress resilience, autonomic balance, and brain–body communication, positioning cellular energy as a determinant of nervous system regulation.

4. One-Carbon Metabolism, Methylation & Cellular Stability

Lyon, P., Strippoli, V., Fang, B., & Cimmino, L. (2020). B Vitamins and one-carbon metabolism: implications in human health and disease.
Nutrients, 12(9), 2867. LINK

Shows how cellular methylation capacity supports DNA repair, neurotransmitter synthesis, metabolic regulation, and long-term cellular resilience.

5. Oxidative Stress, Cellular Damage & Systemic Resilience

Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., et al. (2018).
Oxidative stress, aging, and diseases.
Clinical Interventions in Aging, 13, 757–772. LINK

Reviews human evidence that oxidative stress undermines cellular integrity, accelerating loss of resilience across metabolic, cardiovascular, and nervous systems.

6. Inflammation, Cellular Signalling & Stress Adaptation

Miller, A. H., & Raison, C. L. (2016).
The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nature Reviews Immunology, 16(1), 22–34. LINK

Establishes that chronic cellular inflammation disrupts neural signalling, stress tolerance, and autonomic balance, reinforcing the need for inflammation-regulated cellular health.

Resilience & HRV

Resilience and heart rate variability reflect the body’s capacity to adapt to stress. At a biological level, this adaptability depends on mitochondrial energy production, redox balance, and efficient cellular signalling across the nervous and cardiovascular systems

1. Mitochondrial Function as the Basis of Stress Resilience

Picard, M., McManus, M. J., Gray, J. D., Nasca, C., Moffat, C., Kopinski, P. K., et al. (2015). Mitochondrial dysfunction and psychiatric disorders: from mitochondrial biology to clinical translation. Molecular Psychiatry, 20(6), 635–651. LINK

Demonstrates that mitochondrial energy production, redox balance, and signalling are fundamental to stress resilience, autonomic regulation, and brain–body communication.

2. Mitochondria, Autonomic Nervous System & HRV

Thayer, J. F., Åhs, F., Fredrikson, M., Sollers, J. J., & Wager, T. D. (2012).
A meta-analysis of heart rate variability and neuroimaging studies: implications for heart–brain integration. Neuroscience & Biobehavioral Reviews, 36(2), 747–756. LINK

Shows that HRV reflects central–autonomic network integrity, which depends on cellular and mitochondrial energy availability in both neural and cardiac tissue.

3. NAD⁺, Mitochondrial Health & Cellular Stress Tolerance

Verdin, E. (2015). NAD⁺ in aging, metabolism, and neurodegeneration.
Science, 350(6265), 1208–1213. LINK

Establishes NAD⁺ as a master regulator of mitochondrial function, DNA repair, and cellular stress resistance, all of which underpin resilience and autonomic balance.

4. Cellular Energy Availability & Psychological Resilience

Martínez-Reyes, I., & Chandel, N. S. (2020). Cellular metabolism as a driver of resilience and adaptation.
Cell Metabolism, 32(5), 712–728. LINK

Describes how metabolic flexibility and mitochondrial efficiency enable cells and organisms to adapt to stressors — a core biological definition of resilience.

5. Oxidative Stress, Mitochondria & Autonomic Dysfunction

Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., et al. (2018).
Oxidative stress, aging, and diseases.
Clinical Interventions in Aging, 13, 757–772. LINK

Human evidence that oxidative stress damages mitochondrial function, contributing to impaired stress tolerance, reduced resilience, and dysregulated autonomic responses.

6. Inflammation, Cellular Signalling & HRV

Tracey, K. J. (2002). The inflammatory reflex.
Nature, 420(6917), 853–859. LINK

Introduces the neuro-immune–autonomic interface, showing how cellular inflammation feeds back into vagal tone and HRV, linking immune balance to resilience.